Cargando…
Heterogeneous multimodal biomarkers analysis for Alzheimer’s disease via Bayesian network
By 2050, it is estimated that the number of worldwide Alzheimer’s disease (AD) patients will quadruple from the current number of 36 million, while no proven disease-modifying treatments are available. At present, the underlying disease mechanisms remain under investigation, and recent studies sugge...
Autores principales: | Jin, Yan, Su, Yi, Zhou, Xiao-Hua, Huang, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992017/ https://www.ncbi.nlm.nih.gov/pubmed/27610127 http://dx.doi.org/10.1186/s13637-016-0046-9 |
Ejemplares similares
-
Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks
por: Sherif, Fayroz F., et al.
Publicado: (2015) -
From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach
por: Becker, Ann-Kristin, et al.
Publicado: (2021) -
Nonparametric Bayesian learning for collaborative robot multimodal introspection
por: Zhou, Xuefeng, et al.
Publicado: (2020) -
Neuropsychiatric symptoms associated multimodal brain networks in Alzheimer's disease
por: Li, Kaicheng, et al.
Publicado: (2022) -
Analyse patient-level heterogeneity in Alzheimer’s Disease using multimodal normative modelling
por: Kumar, Sayantan, et al.
Publicado: (2023)