Cargando…

Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice

Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for “clearing heat and relieving toxicity” and its ability to “diffuse the lung and relieve sore thro...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Jin, Nie, Yan, Hou, Yuanyuan, Ma, Xiaoyao, Ding, Guoyu, Gao, Jie, Jiang, Min, Bai, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992511/
https://www.ncbi.nlm.nih.gov/pubmed/27579049
http://dx.doi.org/10.1155/2016/7379146
Descripción
Sumario:Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for “clearing heat and relieving toxicity” and its ability to “diffuse the lung and relieve sore throat.” However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI.