Cargando…
Positive-Unlabeled Learning for Pupylation Sites Prediction
Pupylation plays a key role in regulating various protein functions as a crucial posttranslational modification of prokaryotes. In order to understand the molecular mechanism of pupylation, it is important to identify pupylation substrates and sites accurately. Several computational methods have bee...
Autores principales: | Jiang, Ming, Cao, Jun-Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992543/ https://www.ncbi.nlm.nih.gov/pubmed/27579315 http://dx.doi.org/10.1155/2016/4525786 |
Ejemplares similares
-
EPuL: An Enhanced Positive-Unlabeled Learning Algorithm for the Prediction of Pupylation Sites
por: Nan, Xuanguo, et al.
Publicado: (2017) -
Systematic Analysis and Prediction of Pupylation Sites in Prokaryotic Proteins
por: Chen, Xiang, et al.
Publicado: (2013) -
Position-Specific Analysis and Prediction of Protein Pupylation Sites Based on Multiple Features
por: Zhao, Xiaowei, et al.
Publicado: (2013) -
Computational Identification of Lysine Glutarylation Sites Using Positive-Unlabeled Learning
por: Ju, Zhe, et al.
Publicado: (2020) -
Positive-unlabelled learning of glycosylation sites in the human proteome
por: Li, Fuyi, et al.
Publicado: (2019)