Cargando…

A bivariate genome-wide association study identifies ADAM12 as a novel susceptibility gene for Kashin-Beck disease

Kashin-Beck disease (KBD) is a chronic osteoarthropathy, which manifests as joint deformities and growth retardation. Only a few genetic studies of growth retardation associated with the KBD have been carried out by now. In this study, we conducted a two-stage bivariate genome-wide association study...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Jingcan, Wang, Wenyu, Wen, Yan, Xiao, Xiao, He, Awen, Guo, Xiong, Yang, Tielin, Liu, Xiaogang, Shen, Hui, Chen, Xiangding, Tian, Qing, Deng, Hong-Wen, Zhang, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4992896/
https://www.ncbi.nlm.nih.gov/pubmed/27545300
http://dx.doi.org/10.1038/srep31792
Descripción
Sumario:Kashin-Beck disease (KBD) is a chronic osteoarthropathy, which manifests as joint deformities and growth retardation. Only a few genetic studies of growth retardation associated with the KBD have been carried out by now. In this study, we conducted a two-stage bivariate genome-wide association study (BGWAS) of the KBD using joint deformities and body height as study phenotypes, totally involving 2,417 study subjects. Articular cartilage specimens from 8 subjects were collected for immunohistochemistry. In the BGWAS, ADAM12 gene achieved the most significant association (rs1278300 p-value = 9.25 × 10(−9)) with the KBD. Replication study observed significant association signal at rs1278300 (p-value = 0.007) and rs1710287 (p-value = 0.002) of ADAM12 after Bonferroni correction. Immunohistochemistry revealed significantly decreased expression level of ADAM12 protein in the KBD articular cartilage (average positive chondrocyte rate = 47.59 ± 7.79%) compared to healthy articular cartilage (average positive chondrocyte rate = 64.73 ± 5.05%). Our results suggest that ADAM12 gene is a novel susceptibility gene underlying both joint destruction and growth retardation of the KBD.