Cargando…

Non-linear Parameter Estimates from Non-stationary MEG Data

We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do th...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Vargas, Juan D., López, Jose D., Baker, Adam, Castellanos-Dominguez, German, Woolrich, Mark W., Barnes, Gareth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993126/
https://www.ncbi.nlm.nih.gov/pubmed/27597815
http://dx.doi.org/10.3389/fnins.2016.00366
Descripción
Sumario:We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast.