Cargando…

A Potential Nanofiber Membrane Device for Filling Surgical Residual Cavity to Prevent Glioma Recurrence and Improve Local Neural Tissue Reconstruction

This study aims to develop a novel device with nanofiber membrane capable of sustained release of temozolomide (TMZ) and neuron growth factor (NGF). An improved bio-availability of TMZ and NGF in surroundings proximal to the device was expected to be attained for a prolonged period of time. The devi...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Daoxiang, Lin, Chao, Wen, Xuejun, Gu, Shuying, Zhao, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993477/
https://www.ncbi.nlm.nih.gov/pubmed/27548322
http://dx.doi.org/10.1371/journal.pone.0161435
Descripción
Sumario:This study aims to develop a novel device with nanofiber membrane capable of sustained release of temozolomide (TMZ) and neuron growth factor (NGF). An improved bio-availability of TMZ and NGF in surroundings proximal to the device was expected to be attained for a prolonged period of time. The device was developed by integrating TMZ-doped polycaprolactone (PCL) nanofiber (TP) membrane and NGF-coated PCL (NGFP) membrane using sodium alginate hydrogel. TP was prepared by direct electrospinning of TMZ/PCL. NGFP membrane was developed by layer-by-layer assembling technology. The incorporation of TMZ-doped nanofiber and NGFP nanofiber in the device was confirmed by scanning electron microscopy. The number of NGF layer in NGF-coated PCL membrane could be readily measured with energy spectrum analysis. The in vitro release study showed that TP-NGFP-TP membrane could efficiently liberate TMZ to inhibit the growth of C6 glioma cells, and sufficient NGF to induce the differentiation of PC12 neuron cells over four weeks. Such TP-NGFP-TP membrane device can be employed as a tampon to fill up surgical residual cavity and afford residual glioma removal, structural support, hemostasis, and local neural tissue reconstruction in the surgical treatment of glioma. The study opens a horizon to develop multifunctional biomaterial device for maximized glioma treatment efficacy.