Cargando…
Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract
Previous experiments have demonstrated positive effect of Acadian(®) extract of Ascophyllum nodosum on plant stress-resistance, however the mode of action is not fully understood. The aim of this study was to understand the physiological effect of Acadian(®) seaweed extract on the plant response to...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993721/ https://www.ncbi.nlm.nih.gov/pubmed/27610312 http://dx.doi.org/10.1186/s40064-016-3019-2 |
Sumario: | Previous experiments have demonstrated positive effect of Acadian(®) extract of Ascophyllum nodosum on plant stress-resistance, however the mode of action is not fully understood. The aim of this study was to understand the physiological effect of Acadian(®) seaweed extract on the plant response to drought stress. Leaf temperature and leaf angle were measured as early-stage indicators of plant stress with thermal imaging “in situ” over a 5-day stress-recovery trial. The early stress-response of control became visible on the third day as a rapid wilting of leaves, accompanied with the asymptotic increase of leaf temperature on 4–5 °C to the thermal equilibrium with ambient air temperature. At the same time Acadian(®) treated plants still maintained turgor, accompanied with the linear increase in leaf temperature, which indicated better control of stomatal closure. Re-watering on the fifth day showed better survival of treated plants compared to control. This study demonstrated the ability of Acadian(®) seaweed extract to improve resistance of soybean plants to water stress. |
---|