Cargando…

Influence of Ultraviolet/Ozonolysis Treatment of Nanocarbon Filler on the Electrical Resistivity of Epoxy Composites

In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanop...

Descripción completa

Detalles Bibliográficos
Autores principales: Perets, Yulia, Matzui, Lyudmila, Vovchenko, Lyudmila, Ovsiienko, Irina, Yakovenko, Olena, Lazarenko, Oleksandra, Zhuravkov, Alexander, Brusylovets, Oleksii
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993736/
https://www.ncbi.nlm.nih.gov/pubmed/27550050
http://dx.doi.org/10.1186/s11671-016-1577-4
Descripción
Sumario:In the present work, we have investigated concentration and temperature dependences of electrical conductivity of graphite nanoplatelets/epoxy resin composites. The content of nanocarbon filler is varied from 0.01 to 0.05 volume fraction. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment at 20-min ultraviolet exposure. The electric resistance of the samples was measured by two- or four-probe method and teraohmmeter E6-13. Several characterization techniques were employed to identify the mechanisms behind the improvements in the electrical properties, including SEM and FTIR spectrum analysis. It is established that the changes of the relative intensities of the bands in FTIR spectra indicate the destruction of the carboxyl group –COOH and group –OH. Electrical conductivity of composites has percolation character and graphite nanoplatelets (ultraviolet ozone treatment for 20 min) addition which leads to a decrease of percolation threshold 0.005 volume fraction and increase values of electrical conductivity (by 2–3 orders of magnitude) above the percolation threshold in comparison with composite materials—graphite nanoplatelets/epoxy resin. The changes of the value and behavior of temperature dependences of the electrical resistivity of epoxy composites with ultraviolet/ozone-treated graphite nanoparticles have been analyzed within the model of effective electrical conductivity. The model takes into account the own electrical conductivity of the filler and the value of contact electric resistance between the filler particles of the formation of continuous conductive pathways.