Cargando…
Numerical solutions and error estimations for the space fractional diffusion equation with variable coefficients via Fibonacci collocation method
In this study, the Fibonacci collocation method based on the Fibonacci polynomials are presented to solve for the fractional diffusion equations with variable coefficients. The fractional derivatives are described in the Caputo sense. This method is derived by expanding the approximate solution with...
Autores principales: | Bahşı, Ayşe Kurt, Yalçınbaş, Salih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993744/ https://www.ncbi.nlm.nih.gov/pubmed/27610294 http://dx.doi.org/10.1186/s40064-016-2853-6 |
Ejemplares similares
-
Sinc-Chebyshev Collocation Method for a Class of Fractional Diffusion-Wave Equations
por: Mao, Zhi, et al.
Publicado: (2014) -
A space–time spectral collocation algorithm for the variable order fractional wave equation
por: Bhrawy, A. H., et al.
Publicado: (2016) -
Estimating the error of numerical solutions of systems of reaction-diffusion equations
por: Estep, Donald J, et al.
Publicado: (2000) -
A Collocation Method for Numerical Solution of Nonlinear Delay Integro-Differential Equations for Wireless Sensor Network and Internet of Things
por: Amin, Rohul, et al.
Publicado: (2020) -
Collocation methods for parabolic equations in a single space variable: based on CL-piecewise-polynomial spaces
por: Douglas, Jim, et al.
Publicado: (1974)