Cargando…

ADP-ribosylation Factor-related Protein 1 Interacts with NS5A and Regulates Hepatitis C Virus Propagation

The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet...

Descripción completa

Detalles Bibliográficos
Autores principales: Lim, Yun-Sook, Ngo, Huong T. T., Lee, Jihye, Son, Kidong, Park, Eun-Mee, Hwang, Soon B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994002/
https://www.ncbi.nlm.nih.gov/pubmed/27550144
http://dx.doi.org/10.1038/srep31211
Descripción
Sumario:The life cycle of hepatitis C virus (HCV) is tightly coupled to the lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have previously screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet (LD) formation using cell culture-grown HCV (HCVcc)-infected cells. In this study, we selected and characterized the gene encoding ADP-ribosylation factor-related protein 1 (ARFRP1). ARFRP1 is essential for LD growth and is involved in the regulation of lipolysis. siRNA-mediated knockdown of ARFRP1 significantly inhibited HCV replication in both subgenomic replicon cells and HCVcc-infected cells. ARFRP1 interacted with NS5A and NS5A partially colocalized with LD. Silencing of ARFRP1 abrogated HCV-induced LD growth and viral protein expressions. Moreover, ARFRP1 recruited synaptosomal-associated protein 23 (SNAP23) to sites in close proximity to LDs in HCV-infected cells. Silencing of ARFRP1 ablated relocalization of SNAP23 to LD. These data indicate that HCV regulates ARFRP1 for LD growth to facilitate viral propagation and thus ARFRP1 may be a potential target for antiviral therapy.