Cargando…

Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropria...

Descripción completa

Detalles Bibliográficos
Autores principales: Fancher, Chris M., Han, Zhen, Levin, Igor, Page, Katharine, Reich, Brian J., Smith, Ralph C., Wilson, Alyson G., Jones, Jacob L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994022/
https://www.ncbi.nlm.nih.gov/pubmed/27550221
http://dx.doi.org/10.1038/srep31625
Descripción
Sumario:A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method.