Cargando…
Improving diagnosis of inherited peripheral neuropathies through gene panel analysis
BACKGROUND: Inherited peripheral neuropathies (IPN) are the most common inherited neurological condition. It represents a highly heterogeneous group, both clinically and genetically. Targeted disease specific gene panel massively parallel sequencing (MPS) seems to be a useful tool in diagnosis of di...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994270/ https://www.ncbi.nlm.nih.gov/pubmed/27549087 http://dx.doi.org/10.1186/s13023-016-0500-5 |
Sumario: | BACKGROUND: Inherited peripheral neuropathies (IPN) are the most common inherited neurological condition. It represents a highly heterogeneous group, both clinically and genetically. Targeted disease specific gene panel massively parallel sequencing (MPS) seems to be a useful tool in diagnosis of disorders with high genetic heterogeneity. METHODS: In our study, we have designed, validated and updated our own custom gene panel of all known genes associated with IPN. One hundred and ninety-eight patients have been tested so far. Only patients in whom mutations in more common causes or relevant genes have already been excluded were enrolled. Five consecutive panel designs were prepared according to recent literature search, the last one covering ninety-three genes. Each patient was tested only once. All data were evaluated with at least two different pipelines. RESULTS: In summary, causative mutation has been found in fifty-one patients (26 %). The results were inconclusive in thirty-one (16 %) patients. No variants of likely significance to IPN were found in one hundred and sixteen (58 %) patients. CONCLUSION: MPS gene panel enables testing of all known IPN causes at once with high coverage and at an affordable cost making it truly a method of choice also in IPN. Gene panel testing results in several interesting results and findings. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13023-016-0500-5) contains supplementary material, which is available to authorized users. |
---|