Cargando…
Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints
BACKGROUND: Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation ex...
Autores principales: | Fiedler, Anna, Raeth, Sebastian, Theis, Fabian J., Hausser, Angelika, Hasenauer, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994295/ https://www.ncbi.nlm.nih.gov/pubmed/27549154 http://dx.doi.org/10.1186/s12918-016-0319-7 |
Ejemplares similares
-
Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models
por: Rosenblatt, Marcus, et al.
Publicado: (2016) -
A variational approach to parameter estimation in ordinary differential equations
por: Kaschek, Daniel, et al.
Publicado: (2012) -
Quantifying uncertainty, variability and likelihood for ordinary differential equation models
por: Weiße, Andrea Y, et al.
Publicado: (2010) -
Fides: Reliable trust-region optimization for parameter estimation of ordinary differential equation models
por: Fröhlich, Fabian, et al.
Publicado: (2022) -
AMICI: high-performance sensitivity analysis for large ordinary differential equation models
por: Fröhlich, Fabian, et al.
Publicado: (2021)