Cargando…
Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation
BACKGROUND: Gene expression is known to be an intrinsically stochastic process which can involve single-digit numbers of mRNA molecules in a cell at any given time. The modelling of such processes calls for the use of exact stochastic simulation methods, most notably the Gillespie algorithm. However...
Autores principales: | Lenive, Oleg, W. Kirk, Paul D., H. Stumpf, Michael P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994381/ https://www.ncbi.nlm.nih.gov/pubmed/27549182 http://dx.doi.org/10.1186/s12918-016-0324-x |
Ejemplares similares
-
Approximate Bayesian inference for complex ecosystems
por: Stumpf, Michael P.H.
Publicado: (2014) -
Topological approximate Bayesian computation for parameter inference of an angiogenesis model
por: Thorne, Thomas, et al.
Publicado: (2022) -
Approximate Bayesian Inference
por: Alquier, Pierre
Publicado: (2020) -
Bayesian inference of biochemical kinetic parameters using the linear noise approximation
por: Komorowski, Michał, et al.
Publicado: (2009) -
ABC-SysBio—approximate Bayesian computation in Python with GPU support
por: Liepe, Juliane, et al.
Publicado: (2010)