Cargando…
A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a...
Autores principales: | Shang, Qiang, Lin, Ciyun, Yang, Zhaosheng, Bing, Qichun, Zhou, Xiyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995046/ https://www.ncbi.nlm.nih.gov/pubmed/27551829 http://dx.doi.org/10.1371/journal.pone.0161259 |
Ejemplares similares
-
Passenger Flow Forecasting in Metro Transfer Station Based on the Combination of Singular Spectrum Analysis and AdaBoost-Weighted Extreme Learning Machine
por: Zhou, Wei, et al.
Publicado: (2020) -
Kernel Sparse Representation with Hybrid Regularization for On-Road Traffic Sensor Data Imputation
por: Chen, Xiaobo, et al.
Publicado: (2018) -
Boundedness results for operators with singular kernels on distribution spaces
por: Torres, Rodolfo H
Publicado: (1991) -
Alumina Concentration Detection Based on the Kernel Extreme Learning Machine
por: Zhang, Sen, et al.
Publicado: (2017) -
Algebras of singular integral operators with kernels controlled by multiple norms
por: Nagel, Alexander, et al.
Publicado: (2019)