Cargando…

Complete Mitochondrial Genome of the Citrus Spiny Whitefly Aleurocanthus spiniferus (Quaintance) (Hemiptera: Aleyrodidae): Implications for the Phylogeny of Whiteflies

In this study, we sequenced the complete mitochondrial genome (15,220 bp) of the citrus spiny whitefly, Aleurocanthus spiniferus (Quaintance), a well-known pest from the superfamily Aleyrodidae. The A. spiniferus mitogenome contains 36 genes, including 13 protein-coding genes (PCGs), 21 transfer RNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhi-Teng, Mu, Li-Xia, Wang, Ji-Rui, Du, Yu-Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995055/
https://www.ncbi.nlm.nih.gov/pubmed/27551782
http://dx.doi.org/10.1371/journal.pone.0161385
Descripción
Sumario:In this study, we sequenced the complete mitochondrial genome (15,220 bp) of the citrus spiny whitefly, Aleurocanthus spiniferus (Quaintance), a well-known pest from the superfamily Aleyrodidae. The A. spiniferus mitogenome contains 36 genes, including 13 protein-coding genes (PCGs), 21 transfer RNAs (tRNA), two ribosomal RNAs (rRNA) and a large non-coding region (control region, CR). Like most whiteflies, the A. spiniferus mitogenome had a large degree of rearrangement due to translocation of the nad3-trnG-cox3 gene cluster. The 13 PCGs initiated with ATN and generally terminated with TAA, although some used TAG or T as stop codons; atp6 showed the highest evolutionary rate, whereas cox2 appeared to have the lowest rate. The A. spiniferus mitogenome had 21 tRNAs with a typical cloverleaf secondary structure composed of four arms. Modeling of the two rRNA genes indicated that their secondary structure was similar to that of other insects. The CR of A. spiniferus was 920 bp and mapped between the nad3-trnG-cox3 and trnI-trnM gene clusters. One potential stem-loop structure and five tandem repeats were identified in the CR. Phylogenetic relationships of 11 species from the Aleyrodidae were analyzed based on the deduced amino acid sequences of the 13 PCGs and evolutionary characteristics were explored. Species with more genetic rearrangements were generally more evolved within the Aleyrodidae.