Cargando…
Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructi...
Autores principales: | Barranca, Victor J., Kovačič, Gregor, Zhou, Douglas, Cai, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995494/ https://www.ncbi.nlm.nih.gov/pubmed/27555464 http://dx.doi.org/10.1038/srep31976 |
Ejemplares similares
-
Sparsity and Compressed Coding in Sensory Systems
por: Barranca, Victor J., et al.
Publicado: (2014) -
Compressive Sensing Inference of Neuronal Network Connectivity in Balanced Neuronal Dynamics
por: Barranca, Victor J., et al.
Publicado: (2019) -
A Novel Characterization of Amalgamated Networks in Natural Systems
por: Barranca, Victor J., et al.
Publicado: (2015) -
Multi-Scale Spatial Concatenations of Local Features in Natural Scenes and Scene Classification
por: Zhu, Xiaoyuan, et al.
Publicado: (2013) -
Statistics of natural scene structures and scene categorization
por: Chen, Xin, et al.
Publicado: (2012)