Cargando…
Decoding post-stroke motor function from structural brain imaging
Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate dise...
Autores principales: | Rondina, Jane M., Filippone, Maurizio, Girolami, Mark, Ward, Nick S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995603/ https://www.ncbi.nlm.nih.gov/pubmed/27595065 http://dx.doi.org/10.1016/j.nicl.2016.07.014 |
Ejemplares similares
-
Brain regions important for recovery after severe post-stroke upper limb paresis
por: Rondina, Jane M, et al.
Publicado: (2017) -
Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments
por: Larivière, Sara, et al.
Publicado: (2018) -
Structural brain disconnectivity mapping of post-stroke fatigue
por: Ulrichsen, Kristine M., et al.
Publicado: (2021) -
Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases
por: Rondina, Jane Maryam, et al.
Publicado: (2017) -
Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke
por: Espenhahn, Svenja, et al.
Publicado: (2020)