Cargando…

Linking Α to Ω: diverse and dynamic RNA-based mechanisms to regulate gene expression by 5′-to-3′ communication

Communication between the 5′ and 3′ ends of a eukaryotic messenger RNA (mRNA) or viral genomic RNA is a ubiquitous and important strategy used to regulate gene expression. Although the canonical interaction between initiation factor proteins at the 5′ end of an mRNA and proteins bound to the polyade...

Descripción completa

Detalles Bibliográficos
Autores principales: Filbin, Megan E., Kieft, Jeffrey S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995689/
https://www.ncbi.nlm.nih.gov/pubmed/27610229
http://dx.doi.org/10.12688/f1000research.7913.1
Descripción
Sumario:Communication between the 5′ and 3′ ends of a eukaryotic messenger RNA (mRNA) or viral genomic RNA is a ubiquitous and important strategy used to regulate gene expression. Although the canonical interaction between initiation factor proteins at the 5′ end of an mRNA and proteins bound to the polyadenylate tail at the 3′ end is well known, in fact there are many other strategies used in diverse ways. These strategies can involve “non-canonical” proteins, RNA structures, and direct RNA-RNA base-pairing between distal elements to achieve 5′-to-3′ communication. Likewise, the communication induced by these interactions influences a variety of processes linked to the use and fate of the RNA that contains them. Recent studies are revealing how dynamic these interactions are, possibly changing in response to cellular conditions or to link various phases of the mRNA’s life, from translation to decay. Thus, 5′-to-3′ communication is about more than just making a closed circle; the RNA elements and associated proteins are key players in controlling gene expression at the post-transcriptional level.