Cargando…
MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data
Subclonal mutations reveal important features of the genetic architecture of tumors. However, accurate detection of mutations in genetically heterogeneous tumor cell populations using next-generation sequencing remains challenging. We develop MuSE (http://bioinformatics.mdanderson.org/main/MuSE), Mu...
Autores principales: | Fan, Yu, Xi, Liu, Hughes, Daniel S. T., Zhang, Jianjun, Zhang, Jianhua, Futreal, P. Andrew, Wheeler, David A., Wang, Wenyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995747/ https://www.ncbi.nlm.nih.gov/pubmed/27557938 http://dx.doi.org/10.1186/s13059-016-1029-6 |
Ejemplares similares
-
Accounting for cis-regulatory constraint prioritizes genes likely to affect species-specific traits
por: Starr, Alexander L., et al.
Publicado: (2023) -
Scalable Empirical Mixture Models That Account for Across-Site Compositional Heterogeneity
por: Schrempf, Dominik, et al.
Publicado: (2020) -
Accounting for Errors in Data Improves Divergence Time Estimates in Single-cell Cancer Evolution
por: Chen, Kylie, et al.
Publicado: (2022) -
Ratatosk: hybrid error correction of long reads enables accurate variant calling and assembly
por: Holley, Guillaume, et al.
Publicado: (2021) -
Sequence-specific error profile of Illumina sequencers
por: Nakamura, Kensuke, et al.
Publicado: (2011)