Cargando…
Stepwise iterative maximum likelihood clustering approach
BACKGROUND: Biological/genetic data is a complex mix of various forms or topologies which makes it quite difficult to analyze. An abundance of such data in this modern era requires the development of sophisticated statistical methods to analyze it in a reasonable amount of time. In many biological/g...
Autores principales: | Sharma, Alok, Shigemizu, Daichi, Boroevich, Keith A., López, Yosvany, Kamatani, Yoichiro, Kubo, Michiaki, Tsunoda, Tatsuhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995791/ https://www.ncbi.nlm.nih.gov/pubmed/27553625 http://dx.doi.org/10.1186/s12859-016-1184-5 |
Ejemplares similares
-
Divisive hierarchical maximum likelihood clustering
por: Sharma, Alok, et al.
Publicado: (2017) -
DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture
por: Sharma, Alok, et al.
Publicado: (2019) -
Performance comparison of four commercial human whole-exome capture platforms
por: Shigemizu, Daichi, et al.
Publicado: (2015) -
The Construction of Risk Prediction Models Using GWAS Data and Its Application to a Type 2 Diabetes Prospective Cohort
por: Shigemizu, Daichi, et al.
Publicado: (2014) -
A practical method to detect SNVs and indels from whole genome and exome sequencing data
por: Shigemizu, Daichi, et al.
Publicado: (2013)