Cargando…
Heritability of autism spectrum disorders: a meta‐analysis of twin studies
BACKGROUND: The etiology of Autism Spectrum Disorder (ASD) has been recently debated due to emerging findings on the importance of shared environmental influences. However, two recent twin studies do not support this and instead re‐affirm strong genetic effects on the liability to ASD, a finding con...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996332/ https://www.ncbi.nlm.nih.gov/pubmed/26709141 http://dx.doi.org/10.1111/jcpp.12499 |
_version_ | 1782449587078823936 |
---|---|
author | Tick, Beata Bolton, Patrick Happé, Francesca Rutter, Michael Rijsdijk, Frühling |
author_facet | Tick, Beata Bolton, Patrick Happé, Francesca Rutter, Michael Rijsdijk, Frühling |
author_sort | Tick, Beata |
collection | PubMed |
description | BACKGROUND: The etiology of Autism Spectrum Disorder (ASD) has been recently debated due to emerging findings on the importance of shared environmental influences. However, two recent twin studies do not support this and instead re‐affirm strong genetic effects on the liability to ASD, a finding consistent with previous reports. This study conducts a systematic review and meta‐analysis of all twin studies of ASD published to date and explores the etiology along the continuum of a quantitative measure of ASD. METHODS: A PubMed Central, Science Direct, Google Scholar, Web of Knowledge structured search conducted online, to identify all twin studies on ASD published to date. Thirteen primary twin studies were identified, seven were included in the meta‐analysis by meeting Systematic Recruitment criterion; correction for selection and ascertainment strategies, and applied prevalences were assessed for these studies. In addition, a quantile DF extremes analysis was carried out on Childhood Autism Spectrum Test scores measured in a population sample of 6,413 twin pairs including affected twins. RESULTS: The meta‐analysis correlations for monozygotic twins (MZ) were almost perfect at .98 (95% Confidence Interval, .96–.99). The dizygotic (DZ) correlation, however, was .53 (95% CI .44–.60) when ASD prevalence rate was set at 5% (in line with the Broad Phenotype of ASD) and increased to .67 (95% CI .61–.72) when applying a prevalence rate of 1%. The meta‐analytic heritability estimates were substantial: 64–91%. Shared environmental effects became significant as the prevalence rate decreased from 5–1%: 07–35%. The DF analyses show that for the most part, there is no departure from linearity in heritability. CONCLUSIONS: We demonstrate that: (a) ASD is due to strong genetic effects; (b) shared environmental effects become significant as a function of lower prevalence rate; (c) previously reported significant shared environmental influences are likely a statistical artefact of overinclusion of concordant DZ twins. |
format | Online Article Text |
id | pubmed-4996332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49963322016-09-06 Heritability of autism spectrum disorders: a meta‐analysis of twin studies Tick, Beata Bolton, Patrick Happé, Francesca Rutter, Michael Rijsdijk, Frühling J Child Psychol Psychiatry Original Articles BACKGROUND: The etiology of Autism Spectrum Disorder (ASD) has been recently debated due to emerging findings on the importance of shared environmental influences. However, two recent twin studies do not support this and instead re‐affirm strong genetic effects on the liability to ASD, a finding consistent with previous reports. This study conducts a systematic review and meta‐analysis of all twin studies of ASD published to date and explores the etiology along the continuum of a quantitative measure of ASD. METHODS: A PubMed Central, Science Direct, Google Scholar, Web of Knowledge structured search conducted online, to identify all twin studies on ASD published to date. Thirteen primary twin studies were identified, seven were included in the meta‐analysis by meeting Systematic Recruitment criterion; correction for selection and ascertainment strategies, and applied prevalences were assessed for these studies. In addition, a quantile DF extremes analysis was carried out on Childhood Autism Spectrum Test scores measured in a population sample of 6,413 twin pairs including affected twins. RESULTS: The meta‐analysis correlations for monozygotic twins (MZ) were almost perfect at .98 (95% Confidence Interval, .96–.99). The dizygotic (DZ) correlation, however, was .53 (95% CI .44–.60) when ASD prevalence rate was set at 5% (in line with the Broad Phenotype of ASD) and increased to .67 (95% CI .61–.72) when applying a prevalence rate of 1%. The meta‐analytic heritability estimates were substantial: 64–91%. Shared environmental effects became significant as the prevalence rate decreased from 5–1%: 07–35%. The DF analyses show that for the most part, there is no departure from linearity in heritability. CONCLUSIONS: We demonstrate that: (a) ASD is due to strong genetic effects; (b) shared environmental effects become significant as a function of lower prevalence rate; (c) previously reported significant shared environmental influences are likely a statistical artefact of overinclusion of concordant DZ twins. John Wiley and Sons Inc. 2015-12-27 2016-05 /pmc/articles/PMC4996332/ /pubmed/26709141 http://dx.doi.org/10.1111/jcpp.12499 Text en © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Tick, Beata Bolton, Patrick Happé, Francesca Rutter, Michael Rijsdijk, Frühling Heritability of autism spectrum disorders: a meta‐analysis of twin studies |
title | Heritability of autism spectrum disorders: a meta‐analysis of twin studies |
title_full | Heritability of autism spectrum disorders: a meta‐analysis of twin studies |
title_fullStr | Heritability of autism spectrum disorders: a meta‐analysis of twin studies |
title_full_unstemmed | Heritability of autism spectrum disorders: a meta‐analysis of twin studies |
title_short | Heritability of autism spectrum disorders: a meta‐analysis of twin studies |
title_sort | heritability of autism spectrum disorders: a meta‐analysis of twin studies |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996332/ https://www.ncbi.nlm.nih.gov/pubmed/26709141 http://dx.doi.org/10.1111/jcpp.12499 |
work_keys_str_mv | AT tickbeata heritabilityofautismspectrumdisordersametaanalysisoftwinstudies AT boltonpatrick heritabilityofautismspectrumdisordersametaanalysisoftwinstudies AT happefrancesca heritabilityofautismspectrumdisordersametaanalysisoftwinstudies AT ruttermichael heritabilityofautismspectrumdisordersametaanalysisoftwinstudies AT rijsdijkfruhling heritabilityofautismspectrumdisordersametaanalysisoftwinstudies |