Cargando…

A New Modified Histogram Matching Normalization for Time Series Microarray Analysis

Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on con...

Descripción completa

Detalles Bibliográficos
Autores principales: Astola, Laura, Molenaar, Jaap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996360/
https://www.ncbi.nlm.nih.gov/pubmed/27600344
http://dx.doi.org/10.3390/microarrays3030203
_version_ 1782449589823995904
author Astola, Laura
Molenaar, Jaap
author_facet Astola, Laura
Molenaar, Jaap
author_sort Astola, Laura
collection PubMed
description Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.
format Online
Article
Text
id pubmed-4996360
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-49963602016-09-06 A New Modified Histogram Matching Normalization for Time Series Microarray Analysis Astola, Laura Molenaar, Jaap Microarrays (Basel) Article Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data. MDPI 2014-07-01 /pmc/articles/PMC4996360/ /pubmed/27600344 http://dx.doi.org/10.3390/microarrays3030203 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Astola, Laura
Molenaar, Jaap
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
title A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
title_full A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
title_fullStr A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
title_full_unstemmed A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
title_short A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
title_sort new modified histogram matching normalization for time series microarray analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996360/
https://www.ncbi.nlm.nih.gov/pubmed/27600344
http://dx.doi.org/10.3390/microarrays3030203
work_keys_str_mv AT astolalaura anewmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis
AT molenaarjaap anewmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis
AT astolalaura newmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis
AT molenaarjaap newmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis