Cargando…
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on con...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996360/ https://www.ncbi.nlm.nih.gov/pubmed/27600344 http://dx.doi.org/10.3390/microarrays3030203 |
_version_ | 1782449589823995904 |
---|---|
author | Astola, Laura Molenaar, Jaap |
author_facet | Astola, Laura Molenaar, Jaap |
author_sort | Astola, Laura |
collection | PubMed |
description | Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data. |
format | Online Article Text |
id | pubmed-4996360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-49963602016-09-06 A New Modified Histogram Matching Normalization for Time Series Microarray Analysis Astola, Laura Molenaar, Jaap Microarrays (Basel) Article Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data. MDPI 2014-07-01 /pmc/articles/PMC4996360/ /pubmed/27600344 http://dx.doi.org/10.3390/microarrays3030203 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Astola, Laura Molenaar, Jaap A New Modified Histogram Matching Normalization for Time Series Microarray Analysis |
title | A New Modified Histogram Matching Normalization for Time Series Microarray Analysis |
title_full | A New Modified Histogram Matching Normalization for Time Series Microarray Analysis |
title_fullStr | A New Modified Histogram Matching Normalization for Time Series Microarray Analysis |
title_full_unstemmed | A New Modified Histogram Matching Normalization for Time Series Microarray Analysis |
title_short | A New Modified Histogram Matching Normalization for Time Series Microarray Analysis |
title_sort | new modified histogram matching normalization for time series microarray analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996360/ https://www.ncbi.nlm.nih.gov/pubmed/27600344 http://dx.doi.org/10.3390/microarrays3030203 |
work_keys_str_mv | AT astolalaura anewmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis AT molenaarjaap anewmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis AT astolalaura newmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis AT molenaarjaap newmodifiedhistogrammatchingnormalizationfortimeseriesmicroarrayanalysis |