Cargando…
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on con...
Autores principales: | Astola, Laura, Molenaar, Jaap |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996360/ https://www.ncbi.nlm.nih.gov/pubmed/27600344 http://dx.doi.org/10.3390/microarrays3030203 |
Ejemplares similares
-
Optimized LOWESS normalization parameter selection for DNA microarray data
por: Berger, John A, et al.
Publicado: (2004) -
Compression-based methods of statistical analysis and prediction of time series
por: Ryabko, Boris, et al.
Publicado: (2016) -
Complexity of possibly gapped histogram and analysis of histogram
por: Fushing, Hsieh, et al.
Publicado: (2018) -
Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism
por: Usman, Opeyemi Lateef, et al.
Publicado: (2021) -
Significance analysis of microarray transcript levels in time series experiments
por: Di Camillo, Barbara, et al.
Publicado: (2007)