Cargando…

Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis

Mechanical homeostasis - a fundamental process by which cells maintain stable states under environmental perturbations - is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs)(1-5). Here, we show that single-cell mechanical homeostasis is...

Descripción completa

Detalles Bibliográficos
Autores principales: Weng, Shinuo, Shao, Yue, Chen, Weiqiang, Fu, Jianping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996707/
https://www.ncbi.nlm.nih.gov/pubmed/27240108
http://dx.doi.org/10.1038/nmat4654
Descripción
Sumario:Mechanical homeostasis - a fundamental process by which cells maintain stable states under environmental perturbations - is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs)(1-5). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths via either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modeling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviors in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight previously underappreciated physical nature of the mechanical homeostasis of cells.