Cargando…
Unsupervised background-constrained tank segmentation of infrared images in complex background based on the Otsu method
In an effort to implement fast and effective tank segmentation from infrared images in complex background, the threshold of the maximum between-class variance method (i.e., the Otsu method) is analyzed and the working mechanism of the Otsu method is discussed. Subsequently, a fast and effective meth...
Autores principales: | Zhou, Yulong, Gao, Min, Fang, Dan, Zhang, Baoquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996814/ https://www.ncbi.nlm.nih.gov/pubmed/27625967 http://dx.doi.org/10.1186/s40064-016-3094-4 |
Ejemplares similares
-
Improved YOLOv5 infrared tank target detection method under ground background
por: Liang, Chao, et al.
Publicado: (2023) -
Robust 2D Otsu's Algorithm for Uneven Illumination Image Segmentation
por: Xing, Jiangwa, et al.
Publicado: (2020) -
Infrared Image-Enhancement Algorithm for Weak Targets in Complex Backgrounds
por: Li, Yingchao, et al.
Publicado: (2023) -
Improving the segmentation of digital images by using a modified Otsu’s between-class variance
por: Singh, Simrandeep, et al.
Publicado: (2023) -
Otsu Multi-Threshold Image Segmentation Based on Adaptive Double-Mutation Differential Evolution
por: Guo, Yanmin, et al.
Publicado: (2023)