Cargando…
pypet: A Python Toolkit for Data Management of Parameter Explorations
pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit for managing numerical simulations. Sampling the space of model parameters is a key aspect of simulations and numerical experiments. pypet is designed to allow easy and arbitrary sampling of trajectories through a pa...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996826/ https://www.ncbi.nlm.nih.gov/pubmed/27610080 http://dx.doi.org/10.3389/fninf.2016.00038 |
_version_ | 1782449651274743808 |
---|---|
author | Meyer, Robert Obermayer, Klaus |
author_facet | Meyer, Robert Obermayer, Klaus |
author_sort | Meyer, Robert |
collection | PubMed |
description | pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit for managing numerical simulations. Sampling the space of model parameters is a key aspect of simulations and numerical experiments. pypet is designed to allow easy and arbitrary sampling of trajectories through a parameter space beyond simple grid searches. pypet collects and stores both simulation parameters and results in a single HDF5 file. This collective storage allows fast and convenient loading of data for further analyses. pypet provides various additional features such as multiprocessing and parallelization of simulations, dynamic loading of data, integration of git version control, and supervision of experiments via the electronic lab notebook Sumatra. pypet supports a rich set of data formats, including native Python types, Numpy and Scipy data, Pandas DataFrames, and BRIAN(2) quantities. Besides these formats, users can easily extend the toolkit to allow customized data types. pypet is a flexible tool suited for both short Python scripts and large scale projects. pypet's various features, especially the tight link between parameters and results, promote reproducible research in computational neuroscience and simulation-based disciplines. |
format | Online Article Text |
id | pubmed-4996826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49968262016-09-08 pypet: A Python Toolkit for Data Management of Parameter Explorations Meyer, Robert Obermayer, Klaus Front Neuroinform Neuroscience pypet (Python parameter exploration toolkit) is a new multi-platform Python toolkit for managing numerical simulations. Sampling the space of model parameters is a key aspect of simulations and numerical experiments. pypet is designed to allow easy and arbitrary sampling of trajectories through a parameter space beyond simple grid searches. pypet collects and stores both simulation parameters and results in a single HDF5 file. This collective storage allows fast and convenient loading of data for further analyses. pypet provides various additional features such as multiprocessing and parallelization of simulations, dynamic loading of data, integration of git version control, and supervision of experiments via the electronic lab notebook Sumatra. pypet supports a rich set of data formats, including native Python types, Numpy and Scipy data, Pandas DataFrames, and BRIAN(2) quantities. Besides these formats, users can easily extend the toolkit to allow customized data types. pypet is a flexible tool suited for both short Python scripts and large scale projects. pypet's various features, especially the tight link between parameters and results, promote reproducible research in computational neuroscience and simulation-based disciplines. Frontiers Media S.A. 2016-08-25 /pmc/articles/PMC4996826/ /pubmed/27610080 http://dx.doi.org/10.3389/fninf.2016.00038 Text en Copyright © 2016 Meyer and Obermayer. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Meyer, Robert Obermayer, Klaus pypet: A Python Toolkit for Data Management of Parameter Explorations |
title | pypet: A Python Toolkit for Data Management of Parameter Explorations |
title_full | pypet: A Python Toolkit for Data Management of Parameter Explorations |
title_fullStr | pypet: A Python Toolkit for Data Management of Parameter Explorations |
title_full_unstemmed | pypet: A Python Toolkit for Data Management of Parameter Explorations |
title_short | pypet: A Python Toolkit for Data Management of Parameter Explorations |
title_sort | pypet: a python toolkit for data management of parameter explorations |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996826/ https://www.ncbi.nlm.nih.gov/pubmed/27610080 http://dx.doi.org/10.3389/fninf.2016.00038 |
work_keys_str_mv | AT meyerrobert pypetapythontoolkitfordatamanagementofparameterexplorations AT obermayerklaus pypetapythontoolkitfordatamanagementofparameterexplorations |