Cargando…

Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex

Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuhn, Marion, Wolf, Elias, Maier, Jonathan G., Mainberger, Florian, Feige, Bernd, Schmid, Hanna, Bürklin, Jan, Maywald, Sarah, Mall, Volker, Jung, Nikolai H., Reis, Janine, Spiegelhalder, Kai, Klöppel, Stefan, Sterr, Annette, Eckert, Anne, Riemann, Dieter, Normann, Claus, Nissen, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996971/
https://www.ncbi.nlm.nih.gov/pubmed/27551934
http://dx.doi.org/10.1038/ncomms12455
_version_ 1782449679885139968
author Kuhn, Marion
Wolf, Elias
Maier, Jonathan G.
Mainberger, Florian
Feige, Bernd
Schmid, Hanna
Bürklin, Jan
Maywald, Sarah
Mall, Volker
Jung, Nikolai H.
Reis, Janine
Spiegelhalder, Kai
Klöppel, Stefan
Sterr, Annette
Eckert, Anne
Riemann, Dieter
Normann, Claus
Nissen, Christoph
author_facet Kuhn, Marion
Wolf, Elias
Maier, Jonathan G.
Mainberger, Florian
Feige, Bernd
Schmid, Hanna
Bürklin, Jan
Maywald, Sarah
Mall, Volker
Jung, Nikolai H.
Reis, Janine
Spiegelhalder, Kai
Klöppel, Stefan
Sterr, Annette
Eckert, Anne
Riemann, Dieter
Normann, Claus
Nissen, Christoph
author_sort Kuhn, Marion
collection PubMed
description Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans.
format Online
Article
Text
id pubmed-4996971
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49969712016-09-07 Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex Kuhn, Marion Wolf, Elias Maier, Jonathan G. Mainberger, Florian Feige, Bernd Schmid, Hanna Bürklin, Jan Maywald, Sarah Mall, Volker Jung, Nikolai H. Reis, Janine Spiegelhalder, Kai Klöppel, Stefan Sterr, Annette Eckert, Anne Riemann, Dieter Normann, Claus Nissen, Christoph Nat Commun Article Sleep is ubiquitous in animals and humans, but its function remains to be further determined. The synaptic homeostasis hypothesis of sleep–wake regulation proposes a homeostatic increase in net synaptic strength and cortical excitability along with decreased inducibility of associative synaptic long-term potentiation (LTP) due to saturation after sleep deprivation. Here we use electrophysiological, behavioural and molecular indices to non-invasively study net synaptic strength and LTP-like plasticity in humans after sleep and sleep deprivation. We demonstrate indices of increased net synaptic strength (TMS intensity to elicit a predefined amplitude of motor-evoked potential and EEG theta activity) and decreased LTP-like plasticity (paired associative stimulation induced change in motor-evoked potential and memory formation) after sleep deprivation. Changes in plasma BDNF are identified as a potential mechanism. Our study indicates that sleep recalibrates homeostatic and associative synaptic plasticity, believed to be the neural basis for adaptive behaviour, in humans. Nature Publishing Group 2016-08-23 /pmc/articles/PMC4996971/ /pubmed/27551934 http://dx.doi.org/10.1038/ncomms12455 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kuhn, Marion
Wolf, Elias
Maier, Jonathan G.
Mainberger, Florian
Feige, Bernd
Schmid, Hanna
Bürklin, Jan
Maywald, Sarah
Mall, Volker
Jung, Nikolai H.
Reis, Janine
Spiegelhalder, Kai
Klöppel, Stefan
Sterr, Annette
Eckert, Anne
Riemann, Dieter
Normann, Claus
Nissen, Christoph
Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
title Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
title_full Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
title_fullStr Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
title_full_unstemmed Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
title_short Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
title_sort sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996971/
https://www.ncbi.nlm.nih.gov/pubmed/27551934
http://dx.doi.org/10.1038/ncomms12455
work_keys_str_mv AT kuhnmarion sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT wolfelias sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT maierjonathang sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT mainbergerflorian sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT feigebernd sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT schmidhanna sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT burklinjan sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT maywaldsarah sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT mallvolker sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT jungnikolaih sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT reisjanine sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT spiegelhalderkai sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT kloppelstefan sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT sterrannette sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT eckertanne sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT riemanndieter sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT normannclaus sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex
AT nissenchristoph sleeprecalibrateshomeostaticandassociativesynapticplasticityinthehumancortex