Cargando…
Spatiotemporal Variability of Remotely Sensed PM(2.5) Concentrations in China from 1998 to 2014 Based on a Bayesian Hierarchy Model
With the rapid industrial development and urbanization in China over the past three decades, PM(2.5) pollution has become a severe environmental problem that threatens public health. Due to its unbalanced development and intrinsic topography features, the distribution of PM(2.5) concentrations over...
Autores principales: | Li, Junming, Jin, Meijun, Xu, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997458/ https://www.ncbi.nlm.nih.gov/pubmed/27490557 http://dx.doi.org/10.3390/ijerph13080772 |
Ejemplares similares
-
Exploring Spatial Influence of Remotely Sensed PM(2.5) Concentration Using a Developed Deep Convolutional Neural Network Model
por: Li, Junming, et al.
Publicado: (2019) -
Spatiotemporal Patterns of Ground Monitored PM(2.5) Concentrations in China in Recent Years
por: Li, Junming, et al.
Publicado: (2018) -
Understanding Anthropogenic PM(2.5) Concentrations and Their Drivers in China during 1998–2016
por: Yun, Guoliang, et al.
Publicado: (2022) -
Spatiotemporal Variations of Indoor PM(2.5) Concentrations in Nanjing, China
por: Shao, Zhijuan, et al.
Publicado: (2019) -
An Ensemble Spatiotemporal Model for Predicting PM(2.5) Concentrations
por: Li, Lianfa, et al.
Publicado: (2017)