Cargando…

Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp) Expression of Cells Derived from Human Eye

Human corneal epithelial (HCE-T) and human lens epithelial (SRA01/04) cells derived from the human eye were exposed to 60 gigahertz (GHz) millimeter-wavelength radiation for 24 h. There was no statistically significant increase in the micronucleus (MN) frequency in cells exposed to 60 GHz millimeter...

Descripción completa

Detalles Bibliográficos
Autores principales: Koyama, Shin, Narita, Eijiro, Shimizu, Yoko, Suzuki, Yukihisa, Shiina, Takeo, Taki, Masao, Shinohara, Naoki, Miyakoshi, Junji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997488/
https://www.ncbi.nlm.nih.gov/pubmed/27509516
http://dx.doi.org/10.3390/ijerph13080802
Descripción
Sumario:Human corneal epithelial (HCE-T) and human lens epithelial (SRA01/04) cells derived from the human eye were exposed to 60 gigahertz (GHz) millimeter-wavelength radiation for 24 h. There was no statistically significant increase in the micronucleus (MN) frequency in cells exposed to 60 GHz millimeter-wavelength radiation at 1 mW/cm(2) compared with sham-exposed controls and incubator controls. The MN frequency of cells treated with bleomycin for 1 h provided positive controls. The comet assay, used to detect DNA strand breaks, and heat shock protein (Hsp) expression also showed no statistically significant effects of exposure. These results indicate that exposure to millimeter-wavelength radiation has no effect on genotoxicity in human eye cells.