Cargando…

Prediction of Large Joint Destruction in Patients With Rheumatoid Arthritis Using (18)F-FDG PET/CT and Disease Activity Score

The assessments of joint damage in patients with rheumatoid arthritis (RA) are mainly restricted to small joints in the hands and feet. However, the development of arthritis in RA patients often involves the large joints, such as the shoulder, elbow, hip, knee, and ankle. Few studies have been repor...

Descripción completa

Detalles Bibliográficos
Autores principales: Suto, Takahito, Okamura, Koichi, Yonemoto, Yukio, Okura, Chisa, Tsushima, Yoshito, Takagishi, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998646/
https://www.ncbi.nlm.nih.gov/pubmed/26886646
http://dx.doi.org/10.1097/MD.0000000000002841
Descripción
Sumario:The assessments of joint damage in patients with rheumatoid arthritis (RA) are mainly restricted to small joints in the hands and feet. However, the development of arthritis in RA patients often involves the large joints, such as the shoulder, elbow, hip, knee, and ankle. Few studies have been reported regarding the degree of large joint destruction in RA patients. (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography (FDG-PET/CT) visualizes the disease activity in large joints affected by RA. In this study, the associations between destruction of the large joints and the findings of FDG-PET/CT as well as laboratory parameters were investigated, and factors associated with large joint destruction after the administration of biological therapy were identified in RA patients. A total of 264 large joints in 23 RA patients (6 men and 17 women; mean age of 66.9 ± 7.9 years) were assessed in this study. FDG-PET/CT was performed at baseline and 6 months after the initiation of biological therapy. The extent of FDG uptake in large joints (shoulder, elbow, wrist, hip, knee, and ankle) was analyzed using the maximum standardized uptake value (SUVmax). Radiographs of the 12 large joints per patient obtained at baseline and after 2 years were assessed according to Larsen's method. A logistic regression analysis was performed to determine the factors most significantly contributing to the progression of joint destruction within 2 years. Radiographic progression of joint destruction was detected in 33 joints. The SUVmax at baseline and 6 months, and the disease activity score (DAS) 28-erythrocyte sedimentation rate (ESR) at 6, 12, and 24 months were significantly higher in the group with progressive joint destruction. The SUVmax at baseline and DAS28-ESR at 6 months were found to be factors associated with joint destruction at 2 years (P < 0.05). The FDG uptake in the joints with destruction was higher than that observed in the joints without destruction. The SUVmax at baseline and the DAS28-ESR at 6 months after the biological treatment were identified to be significant factors predicting destruction of the large joints at 2 years.