Cargando…

The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest

Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active‐layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active‐layer thickness; ALT...

Descripción completa

Detalles Bibliográficos
Autores principales: Fisher, James P., Estop‐Aragonés, Cristian, Thierry, Aaron, Charman, Dan J., Wolfe, Stephen A., Hartley, Iain P., Murton, Julian B., Williams, Mathew, Phoenix, Gareth K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999035/
https://www.ncbi.nlm.nih.gov/pubmed/26855070
http://dx.doi.org/10.1111/gcb.13248
_version_ 1782450047711969280
author Fisher, James P.
Estop‐Aragonés, Cristian
Thierry, Aaron
Charman, Dan J.
Wolfe, Stephen A.
Hartley, Iain P.
Murton, Julian B.
Williams, Mathew
Phoenix, Gareth K.
author_facet Fisher, James P.
Estop‐Aragonés, Cristian
Thierry, Aaron
Charman, Dan J.
Wolfe, Stephen A.
Hartley, Iain P.
Murton, Julian B.
Williams, Mathew
Phoenix, Gareth K.
author_sort Fisher, James P.
collection PubMed
description Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active‐layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active‐layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site‐specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0–6 cm) promoted increased ALTs, whereas deeper soil moisture (11–16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate.
format Online
Article
Text
id pubmed-4999035
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49990352016-09-13 The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest Fisher, James P. Estop‐Aragonés, Cristian Thierry, Aaron Charman, Dan J. Wolfe, Stephen A. Hartley, Iain P. Murton, Julian B. Williams, Mathew Phoenix, Gareth K. Glob Chang Biol Primary Research Articles Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active‐layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active‐layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site‐specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0–6 cm) promoted increased ALTs, whereas deeper soil moisture (11–16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate. John Wiley and Sons Inc. 2016-06-09 2016-09 /pmc/articles/PMC4999035/ /pubmed/26855070 http://dx.doi.org/10.1111/gcb.13248 Text en © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Primary Research Articles
Fisher, James P.
Estop‐Aragonés, Cristian
Thierry, Aaron
Charman, Dan J.
Wolfe, Stephen A.
Hartley, Iain P.
Murton, Julian B.
Williams, Mathew
Phoenix, Gareth K.
The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
title The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
title_full The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
title_fullStr The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
title_full_unstemmed The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
title_short The influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
title_sort influence of vegetation and soil characteristics on active‐layer thickness of permafrost soils in boreal forest
topic Primary Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999035/
https://www.ncbi.nlm.nih.gov/pubmed/26855070
http://dx.doi.org/10.1111/gcb.13248
work_keys_str_mv AT fisherjamesp theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT estoparagonescristian theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT thierryaaron theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT charmandanj theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT wolfestephena theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT hartleyiainp theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT murtonjulianb theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT williamsmathew theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT phoenixgarethk theinfluenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT fisherjamesp influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT estoparagonescristian influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT thierryaaron influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT charmandanj influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT wolfestephena influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT hartleyiainp influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT murtonjulianb influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT williamsmathew influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest
AT phoenixgarethk influenceofvegetationandsoilcharacteristicsonactivelayerthicknessofpermafrostsoilsinborealforest