Cargando…

Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system

Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have o...

Descripción completa

Detalles Bibliográficos
Autores principales: Bush, Nicholas E, Schroeder, Christopher L, Hobbs, Jennifer A, Yang, Anne ET, Huet, Lucie A, Solla, Sara A, Hartmann, Mitra JZ
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999311/
https://www.ncbi.nlm.nih.gov/pubmed/27348221
http://dx.doi.org/10.7554/eLife.13969
_version_ 1782450100758380544
author Bush, Nicholas E
Schroeder, Christopher L
Hobbs, Jennifer A
Yang, Anne ET
Huet, Lucie A
Solla, Sara A
Hartmann, Mitra JZ
author_facet Bush, Nicholas E
Schroeder, Christopher L
Hobbs, Jennifer A
Yang, Anne ET
Huet, Lucie A
Solla, Sara A
Hartmann, Mitra JZ
author_sort Bush, Nicholas E
collection PubMed
description Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space. DOI: http://dx.doi.org/10.7554/eLife.13969.001
format Online
Article
Text
id pubmed-4999311
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-49993112016-08-29 Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system Bush, Nicholas E Schroeder, Christopher L Hobbs, Jennifer A Yang, Anne ET Huet, Lucie A Solla, Sara A Hartmann, Mitra JZ eLife Computational and Systems Biology Tactile information available to the rat vibrissal system begins as external forces that cause whisker deformations, which in turn excite mechanoreceptors in the follicle. Despite the fundamental mechanical origin of tactile information, primary sensory neurons in the trigeminal ganglion (Vg) have often been described as encoding the kinematics (geometry) of object contact. Here we aimed to determine the extent to which Vg neurons encode the kinematics vs. mechanics of contact. We used models of whisker bending to quantify mechanical signals (forces and moments) at the whisker base while simultaneously monitoring whisker kinematics and recording single Vg units in both anesthetized rats and awake, body restrained rats. We employed a novel manual stimulation technique to deflect whiskers in a way that decouples kinematics from mechanics, and used Generalized Linear Models (GLMs) to show that Vg neurons more directly encode mechanical signals when the whisker is deflected in this decoupled stimulus space. DOI: http://dx.doi.org/10.7554/eLife.13969.001 eLife Sciences Publications, Ltd 2016-06-27 /pmc/articles/PMC4999311/ /pubmed/27348221 http://dx.doi.org/10.7554/eLife.13969 Text en © 2016, Bush et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Bush, Nicholas E
Schroeder, Christopher L
Hobbs, Jennifer A
Yang, Anne ET
Huet, Lucie A
Solla, Sara A
Hartmann, Mitra JZ
Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
title Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
title_full Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
title_fullStr Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
title_full_unstemmed Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
title_short Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
title_sort decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999311/
https://www.ncbi.nlm.nih.gov/pubmed/27348221
http://dx.doi.org/10.7554/eLife.13969
work_keys_str_mv AT bushnicholase decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem
AT schroederchristopherl decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem
AT hobbsjennifera decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem
AT yanganneet decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem
AT huetluciea decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem
AT sollasaraa decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem
AT hartmannmitrajz decouplingkinematicsandmechanicsrevealscodingpropertiesoftrigeminalganglionneuronsintheratvibrissalsystem