Cargando…

Exploring stability-based voxel selection methods in MVPA using cognitive neuroimaging data: a comprehensive study

Feature selection plays a key role in multi-voxel pattern analysis because functional magnetic resonance imaging data are typically noisy, sparse, and high-dimensional. Although the conventional evaluation criterion is the classification accuracy, selecting a stable feature set that is not sensitive...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Miaolin, Chou, Chun-An
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999569/
https://www.ncbi.nlm.nih.gov/pubmed/27747593
http://dx.doi.org/10.1007/s40708-016-0048-0
Descripción
Sumario:Feature selection plays a key role in multi-voxel pattern analysis because functional magnetic resonance imaging data are typically noisy, sparse, and high-dimensional. Although the conventional evaluation criterion is the classification accuracy, selecting a stable feature set that is not sensitive to the variance in dataset may provide more scientific insights. In this study, we aim to investigate the stability of feature selection methods and test the stability-based feature selection scheme on two benchmark datasets. Top-k feature selection with a ranking score of mutual information and correlation, recursive feature elimination integrated with support vector machine, and L1 and L2-norm regularizations were adapted to a bootstrapped stability selection framework, and the selected algorithms were compared based on both accuracy and stability scores. The results indicate that regularization-based methods are generally more stable in StarPlus dataset, but in Haxby dataset they failed to perform as well as others.