Cargando…
Exploring stability-based voxel selection methods in MVPA using cognitive neuroimaging data: a comprehensive study
Feature selection plays a key role in multi-voxel pattern analysis because functional magnetic resonance imaging data are typically noisy, sparse, and high-dimensional. Although the conventional evaluation criterion is the classification accuracy, selecting a stable feature set that is not sensitive...
Autores principales: | Fan, Miaolin, Chou, Chun-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999569/ https://www.ncbi.nlm.nih.gov/pubmed/27747593 http://dx.doi.org/10.1007/s40708-016-0048-0 |
Ejemplares similares
-
Voxel-Wise Feature Selection Method for CNN Binary Classification of Neuroimaging Data
por: Messina, Domenico, et al.
Publicado: (2021) -
SF-MVPA: A from raw data to statistical results and surface space-based MVPA toolbox
por: Li, Qiang, et al.
Publicado: (2022) -
CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave
por: Oosterhof, Nikolaas N., et al.
Publicado: (2016) -
Are all MVPA minutes equal? Associations between MVPA characteristics, independent of duration, and childhood adiposity
por: Miatke, Aaron, et al.
Publicado: (2021) -
PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data
por: Hanke, Michael, et al.
Publicado: (2009)