Cargando…
FFPred 3: feature-based function prediction for all Gene Ontology domains
Predicting protein function has been a major goal of bioinformatics for several decades, and it has gained fresh momentum thanks to recent community-wide blind tests aimed at benchmarking available tools on a genomic scale. Sequence-based predictors, especially those performing homology-based transf...
Autores principales: | Cozzetto, Domenico, Minneci, Federico, Currant, Hannah, Jones, David T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999993/ https://www.ncbi.nlm.nih.gov/pubmed/27561554 http://dx.doi.org/10.1038/srep31865 |
Ejemplares similares
-
FFPred 2.0: Improved Homology-Independent Prediction of Gene Ontology Terms for Eukaryotic Protein Sequences
por: Minneci, Federico, et al.
Publicado: (2013) -
FFPred: an integrated feature-based function prediction server for vertebrate proteomes
por: Lobley, A. E., et al.
Publicado: (2008) -
DISOPRED3: precise disordered region predictions with annotated protein-binding activity
por: Jones, David T., et al.
Publicado: (2015) -
Predicting human protein function with multi-task deep neural networks
por: Fa, Rui, et al.
Publicado: (2018) -
Protein function prediction by massive integration of evolutionary analyses and multiple data sources
por: Cozzetto, Domenico, et al.
Publicado: (2013)