Cargando…

OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis

BACKGROUND: Nasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rago, Alfredo, Gilbert, Donald G., Choi, Jeong-Hyeon, Sackton, Timothy B., Wang, Xu, Kelkar, Yogeshwar D., Werren, John H., Colbourne, John K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000498/
https://www.ncbi.nlm.nih.gov/pubmed/27561358
http://dx.doi.org/10.1186/s12864-016-2886-9
_version_ 1782450297306611712
author Rago, Alfredo
Gilbert, Donald G.
Choi, Jeong-Hyeon
Sackton, Timothy B.
Wang, Xu
Kelkar, Yogeshwar D.
Werren, John H.
Colbourne, John K.
author_facet Rago, Alfredo
Gilbert, Donald G.
Choi, Jeong-Hyeon
Sackton, Timothy B.
Wang, Xu
Kelkar, Yogeshwar D.
Werren, John H.
Colbourne, John K.
author_sort Rago, Alfredo
collection PubMed
description BACKGROUND: Nasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set. RESULTS: The revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola. Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage. We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts. CONCLUSIONS: Genome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia’s biology, as well as numerous novel genes. OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/, www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas. The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2886-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5000498
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50004982016-08-27 OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis Rago, Alfredo Gilbert, Donald G. Choi, Jeong-Hyeon Sackton, Timothy B. Wang, Xu Kelkar, Yogeshwar D. Werren, John H. Colbourne, John K. BMC Genomics Research Article BACKGROUND: Nasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set. RESULTS: The revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola. Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage. We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts. CONCLUSIONS: Genome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia’s biology, as well as numerous novel genes. OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/, www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas. The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2886-9) contains supplementary material, which is available to authorized users. BioMed Central 2016-08-25 /pmc/articles/PMC5000498/ /pubmed/27561358 http://dx.doi.org/10.1186/s12864-016-2886-9 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Rago, Alfredo
Gilbert, Donald G.
Choi, Jeong-Hyeon
Sackton, Timothy B.
Wang, Xu
Kelkar, Yogeshwar D.
Werren, John H.
Colbourne, John K.
OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
title OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
title_full OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
title_fullStr OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
title_full_unstemmed OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
title_short OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis
title_sort ogs2: genome re-annotation of the jewel wasp nasonia vitripennis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000498/
https://www.ncbi.nlm.nih.gov/pubmed/27561358
http://dx.doi.org/10.1186/s12864-016-2886-9
work_keys_str_mv AT ragoalfredo ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT gilbertdonaldg ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT choijeonghyeon ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT sacktontimothyb ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT wangxu ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT kelkaryogeshward ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT werrenjohnh ogs2genomereannotationofthejewelwaspnasoniavitripennis
AT colbournejohnk ogs2genomereannotationofthejewelwaspnasoniavitripennis