Cargando…
A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces
Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model...
Autores principales: | Melo, Rita, Fieldhouse, Robert, Melo, André, Correia, João D. G., Cordeiro, Maria Natália D. S., Gümüş, Zeynep H., Costa, Joaquim, Bonvin, Alexandre M. J. J., Moreira, Irina S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000613/ https://www.ncbi.nlm.nih.gov/pubmed/27472327 http://dx.doi.org/10.3390/ijms17081215 |
Ejemplares similares
-
SpotOn: High Accuracy Identification of Protein-Protein Interface Hot-Spots
por: Moreira, Irina S., et al.
Publicado: (2017) -
Identification of hot spot residues at protein-protein interface
por: Li, Lei, et al.
Publicado: (2006) -
HotSprint: database of computational hot spots in protein interfaces
por: Guney, Emre, et al.
Publicado: (2008) -
HotPoint: hot spot prediction server for protein interfaces
por: Tuncbag, Nurcan, et al.
Publicado: (2010) -
Predicting and Experimentally Validating Hot-Spot
Residues at Protein–Protein Interfaces
por: Ibarra, Amaurys A., et al.
Publicado: (2019)