Cargando…

Demethylation treatment restores erectile function in a rat model of hyperhomocysteinemia

Methylation modification is an important cellular mechanism of gene expression regulation. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) protein is a pivotal molecular for endothelium function. To explore the effects of 5-aza-deoxycytidine (5-aza), a demethylation agent, in hyperhomocysteinemia...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zheng, Zhu, Lei-Lei, Jiang, He-Song, Chen, Hai, Chen, Yun, Dai, Yu-Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5000801/
https://www.ncbi.nlm.nih.gov/pubmed/26585696
http://dx.doi.org/10.4103/1008-682X.163271
Descripción
Sumario:Methylation modification is an important cellular mechanism of gene expression regulation. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) protein is a pivotal molecular for endothelium function. To explore the effects of 5-aza-deoxycytidine (5-aza), a demethylation agent, in hyperhomocysteinemia (hhcy)-related erectile dysfunction (ED) rats, 5-aza (1 mg kg(−1)) was administrated to Sprague-Dawley hhcy-rats induced by supplemented methionine chow diet. Erectile function, nitric oxide-cyclic guanosine monophosphate (NO-cGMP) levels, expression of DDAH-2 protein and promoter methylation status of DDAH-2 were studied in the corpora cavernosa. We found that supplemented methionine diet induced a high homocysteine level after 6 weeks of treatment. DDAH-2 protein was down-regulated in the corpora cavernosa while the administration of 5-aza up-regulated DDAH-2 expression and restored erectile function. The methionine-fed rats showed high methylation levels of DDAH-2 promoter region while the group treated with 5-aza demonstrated lower-methylation levels when compared to the methionine-fed group. Besides, the administration of 5-aza improved NO and cGMP levels in methionine-fed rats. Therefore, the methylation mechanism involves in ED pathogenesis, and demethylation offers a potential new strategy for ED treatment.