Cargando…
Effects of γ-Aminobutyric Acid A Receptor Activation on Counterregulatory Responses to Subsequent Exercise in Individuals With Type 1 Diabetes
The effects of γ-aminobutyric acid (GABA) A receptor activation on physiologic responses during next-day exercise in type 1 diabetes are unknown. To test the hypothesis that GABA A activation with the benzodiazepine alprazolam would blunt counterregulatory responses during subsequent exercise, 29 (1...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001183/ https://www.ncbi.nlm.nih.gov/pubmed/27217489 http://dx.doi.org/10.2337/db16-0207 |
Sumario: | The effects of γ-aminobutyric acid (GABA) A receptor activation on physiologic responses during next-day exercise in type 1 diabetes are unknown. To test the hypothesis that GABA A activation with the benzodiazepine alprazolam would blunt counterregulatory responses during subsequent exercise, 29 (15 male, 14 female) individuals with type 1 diabetes (HbA(1c) 7.8 ± 1%) were studied during separate 2-day protocols. Day 1 consisted of morning and afternoon 2-h euglycemic or 2.9 mmol/L hypoglycemic clamps with or without 1 mg alprazolam given 30 min before each clamp. Day 2 consisted of a 90-min euglycemic cycling exercise at 50% VO(2max). Tritiated glucose was used to measure glucose kinetics. Despite equivalent day 2 insulin (93 ± 6 pmol/L) and glucose levels (5.3 ± 0.1 mmol/L), plasma epinephrine, norepinephrine, glucagon, cortisol, and growth hormone responses were similarly reduced after alprazolam or day 1 hypoglycemia compared with euglycemic control. Endogenous glucose production, lipolysis (glycerol, nonesterified fatty acid), and glycogenolysis (lactate) were also reduced during day 2 exercise after day 1 GABA A activation. We conclude that activation of GABA A receptors with alprazolam can result in widespread neuroendocrine, autonomic nervous system, and metabolic counterregulatory failure during subsequent submaximal exercise and may increase the risk of exercise-associated hypoglycemia in individuals with type 1 diabetes. |
---|