Cargando…

A matrix rank based concordance index for evaluating and detecting conditional specific co-expressed gene modules

BACKGROUND:  Gene co-expression network analysis (GCNA) is widely adopted in bioinformatics and biomedical research with applications such as gene function prediction, protein-protein interaction inference, disease markers identification, and copy number variance discovery. Currently there is a lack...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Zhi, Zhang, Jie, Sun, Guoyuan, Liu, Gang, Huang, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001231/
https://www.ncbi.nlm.nih.gov/pubmed/27556416
http://dx.doi.org/10.1186/s12864-016-2912-y
Descripción
Sumario:BACKGROUND:  Gene co-expression network analysis (GCNA) is widely adopted in bioinformatics and biomedical research with applications such as gene function prediction, protein-protein interaction inference, disease markers identification, and copy number variance discovery. Currently there is a lack of rigorous analysis on the mathematical condition for which the co-expressed gene module should satisfy. METHODS: In this paper, we present a linear algebraic based Centralized Concordance Index (CCI) for evaluating the concordance of co-expressed gene modules from gene co-expression network analysis. The CCI can be used to evaluate the performance for co-expression network analysis algorithms as well as for detecting condition specific co-expression modules. We applied CCI in detecting lung tumor specific gene modules. RESULTS AND DISCUSSION: Simulation showed that CCI is a robust indicator for evaluating the concordance of a group of co-expressed genes. The application to lung cancer datasets revealed interesting potential tumor specific genetic alterations including CNVs and even hints for gene-fusion. Deeper analysis required for understanding the molecular mechanisms of all such condition specific co-expression relationships. CONCLUSION: The CCI can be used to evaluate the performance for co-expression network analysis algorithms as well as for detecting condition specific co-expression modules. It is shown to be more robust to outliers and interfering modules than density based on Pearson correlation coefficients.