Cargando…
A matrix rank based concordance index for evaluating and detecting conditional specific co-expressed gene modules
BACKGROUND: Gene co-expression network analysis (GCNA) is widely adopted in bioinformatics and biomedical research with applications such as gene function prediction, protein-protein interaction inference, disease markers identification, and copy number variance discovery. Currently there is a lack...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001231/ https://www.ncbi.nlm.nih.gov/pubmed/27556416 http://dx.doi.org/10.1186/s12864-016-2912-y |
Sumario: | BACKGROUND: Gene co-expression network analysis (GCNA) is widely adopted in bioinformatics and biomedical research with applications such as gene function prediction, protein-protein interaction inference, disease markers identification, and copy number variance discovery. Currently there is a lack of rigorous analysis on the mathematical condition for which the co-expressed gene module should satisfy. METHODS: In this paper, we present a linear algebraic based Centralized Concordance Index (CCI) for evaluating the concordance of co-expressed gene modules from gene co-expression network analysis. The CCI can be used to evaluate the performance for co-expression network analysis algorithms as well as for detecting condition specific co-expression modules. We applied CCI in detecting lung tumor specific gene modules. RESULTS AND DISCUSSION: Simulation showed that CCI is a robust indicator for evaluating the concordance of a group of co-expressed genes. The application to lung cancer datasets revealed interesting potential tumor specific genetic alterations including CNVs and even hints for gene-fusion. Deeper analysis required for understanding the molecular mechanisms of all such condition specific co-expression relationships. CONCLUSION: The CCI can be used to evaluate the performance for co-expression network analysis algorithms as well as for detecting condition specific co-expression modules. It is shown to be more robust to outliers and interfering modules than density based on Pearson correlation coefficients. |
---|