Cargando…
Learning Low-Dimensional Representations of Medical Concepts
We show how to learn low-dimensional representations (embeddings) of a wide range of concepts in medicine, including diseases (e.g., ICD9 codes), medications, procedures, and laboratory tests. We expect that these embeddings will be useful across medical informatics for tasks such as cohort selectio...
Autores principales: | Choi, Youngduck, Chiu, Chill Yi-I, Sontag, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001761/ https://www.ncbi.nlm.nih.gov/pubmed/27570647 |
Ejemplares similares
-
Electronic medical record phenotyping using the anchor and learn framework
por: Halpern, Yoni, et al.
Publicado: (2016) -
Medical concept normalization in clinical trials with drug and disease representation learning
por: Miftahutdinov, Zulfat, et al.
Publicado: (2021) -
An iconic language for the graphical representation of medical concepts
por: Lamy, Jean-Baptiste, et al.
Publicado: (2008) -
Statistical Analysis of Multisensory and Text-Derived Representations on Concept Learning
por: Wang, Yuwei, et al.
Publicado: (2022) -
Predictive learning as a network mechanism for extracting low-dimensional latent space representations
por: Recanatesi, Stefano, et al.
Publicado: (2021)