Cargando…
Regular Expression-Based Learning for METs Value Extraction
Functional status as measured by exercise capacity is an important clinical variable in the care of patients with cardiovascular diseases. Exercise capacity is commonly reported in terms of Metabolic Equivalents (METs). In the medical records, METs can often be found in a variety of clinical notes....
Autores principales: | Redd, Douglas, Kuang, Jinqiu, Mohanty, April, Bray, Bruce E., Zeng-Treitler, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001783/ https://www.ncbi.nlm.nih.gov/pubmed/27570673 |
Ejemplares similares
-
Assessing Pictograph Recognition: A Comparison of Crowdsourcing and Traditional Survey Approaches
por: Kuang, Jinqiu, et al.
Publicado: (2015) -
The effect of simulated narratives that leverage EMR data on shared decision-making: a pilot study
por: Zeng-Treitler, Qing, et al.
Publicado: (2016) -
Patient needs and preferences for herb-drug-disease interaction alerts: a structured interview study
por: Christensen, Carrie M., et al.
Publicado: (2017) -
Learning regular expressions
por: Forta, Ben
Publicado: (2018) -
Hybrid Value-Aware Transformer Architecture for Joint Learning from Longitudinal and Non-Longitudinal Clinical Data
por: Shao, Yijun, et al.
Publicado: (2023)