Cargando…

High-fat diet feeding differentially affects the development of inflammation in the central nervous system

BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different...

Descripción completa

Detalles Bibliográficos
Autores principales: Guillemot-Legris, Owein, Masquelier, Julien, Everard, Amandine, Cani, Patrice D., Alhouayek, Mireille, Muccioli, Giulio G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002131/
https://www.ncbi.nlm.nih.gov/pubmed/27566530
http://dx.doi.org/10.1186/s12974-016-0666-8
_version_ 1782450520991989760
author Guillemot-Legris, Owein
Masquelier, Julien
Everard, Amandine
Cani, Patrice D.
Alhouayek, Mireille
Muccioli, Giulio G.
author_facet Guillemot-Legris, Owein
Masquelier, Julien
Everard, Amandine
Cani, Patrice D.
Alhouayek, Mireille
Muccioli, Giulio G.
author_sort Guillemot-Legris, Owein
collection PubMed
description BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. METHODS: We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. RESULTS: We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids—phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines—as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. CONCLUSIONS: This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-016-0666-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5002131
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50021312016-08-28 High-fat diet feeding differentially affects the development of inflammation in the central nervous system Guillemot-Legris, Owein Masquelier, Julien Everard, Amandine Cani, Patrice D. Alhouayek, Mireille Muccioli, Giulio G. J Neuroinflammation Research BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. METHODS: We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. RESULTS: We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids—phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines—as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. CONCLUSIONS: This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-016-0666-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-08-26 /pmc/articles/PMC5002131/ /pubmed/27566530 http://dx.doi.org/10.1186/s12974-016-0666-8 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Guillemot-Legris, Owein
Masquelier, Julien
Everard, Amandine
Cani, Patrice D.
Alhouayek, Mireille
Muccioli, Giulio G.
High-fat diet feeding differentially affects the development of inflammation in the central nervous system
title High-fat diet feeding differentially affects the development of inflammation in the central nervous system
title_full High-fat diet feeding differentially affects the development of inflammation in the central nervous system
title_fullStr High-fat diet feeding differentially affects the development of inflammation in the central nervous system
title_full_unstemmed High-fat diet feeding differentially affects the development of inflammation in the central nervous system
title_short High-fat diet feeding differentially affects the development of inflammation in the central nervous system
title_sort high-fat diet feeding differentially affects the development of inflammation in the central nervous system
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002131/
https://www.ncbi.nlm.nih.gov/pubmed/27566530
http://dx.doi.org/10.1186/s12974-016-0666-8
work_keys_str_mv AT guillemotlegrisowein highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem
AT masquelierjulien highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem
AT everardamandine highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem
AT canipatriced highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem
AT alhouayekmireille highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem
AT muccioligiuliog highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem