Cargando…
High-fat diet feeding differentially affects the development of inflammation in the central nervous system
BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002131/ https://www.ncbi.nlm.nih.gov/pubmed/27566530 http://dx.doi.org/10.1186/s12974-016-0666-8 |
_version_ | 1782450520991989760 |
---|---|
author | Guillemot-Legris, Owein Masquelier, Julien Everard, Amandine Cani, Patrice D. Alhouayek, Mireille Muccioli, Giulio G. |
author_facet | Guillemot-Legris, Owein Masquelier, Julien Everard, Amandine Cani, Patrice D. Alhouayek, Mireille Muccioli, Giulio G. |
author_sort | Guillemot-Legris, Owein |
collection | PubMed |
description | BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. METHODS: We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. RESULTS: We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids—phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines—as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. CONCLUSIONS: This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-016-0666-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5002131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50021312016-08-28 High-fat diet feeding differentially affects the development of inflammation in the central nervous system Guillemot-Legris, Owein Masquelier, Julien Everard, Amandine Cani, Patrice D. Alhouayek, Mireille Muccioli, Giulio G. J Neuroinflammation Research BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. METHODS: We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. RESULTS: We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids—phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines—as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. CONCLUSIONS: This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-016-0666-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-08-26 /pmc/articles/PMC5002131/ /pubmed/27566530 http://dx.doi.org/10.1186/s12974-016-0666-8 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Guillemot-Legris, Owein Masquelier, Julien Everard, Amandine Cani, Patrice D. Alhouayek, Mireille Muccioli, Giulio G. High-fat diet feeding differentially affects the development of inflammation in the central nervous system |
title | High-fat diet feeding differentially affects the development of inflammation in the central nervous system |
title_full | High-fat diet feeding differentially affects the development of inflammation in the central nervous system |
title_fullStr | High-fat diet feeding differentially affects the development of inflammation in the central nervous system |
title_full_unstemmed | High-fat diet feeding differentially affects the development of inflammation in the central nervous system |
title_short | High-fat diet feeding differentially affects the development of inflammation in the central nervous system |
title_sort | high-fat diet feeding differentially affects the development of inflammation in the central nervous system |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002131/ https://www.ncbi.nlm.nih.gov/pubmed/27566530 http://dx.doi.org/10.1186/s12974-016-0666-8 |
work_keys_str_mv | AT guillemotlegrisowein highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem AT masquelierjulien highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem AT everardamandine highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem AT canipatriced highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem AT alhouayekmireille highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem AT muccioligiuliog highfatdietfeedingdifferentiallyaffectsthedevelopmentofinflammationinthecentralnervoussystem |