Cargando…
Ascorbyl palmitate synthesis in an organic solvent system using a Celite-immobilized commercial lipase (Lipolase 100L)
Ascorbyl palmitate was synthesized using a Celite-immobilized commercial lipase (Lipolase 100L) in dimethylsulfoxide (DMSO) as an organic solvent system. Lipase immobilized by surface adsorption onto Celite 545 matrix and subsequently exposed to 1 % glutaraldehyde showed 75 % binding of protein. The...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002271/ https://www.ncbi.nlm.nih.gov/pubmed/28330255 http://dx.doi.org/10.1007/s13205-016-0486-7 |
Sumario: | Ascorbyl palmitate was synthesized using a Celite-immobilized commercial lipase (Lipolase 100L) in dimethylsulfoxide (DMSO) as an organic solvent system. Lipase immobilized by surface adsorption onto Celite 545 matrix and subsequently exposed to 1 % glutaraldehyde showed 75 % binding of protein. The Celite-bound lipase was optimally active at 75 °C and pH 8.5 under shaking and showed maximum hydrolytic activity toward p-NPP as a substrate. The bound lipase was found to be stimulated only in the presence of Al(3+) and EDTA. All surfactants (Tween-20, Tween-80 and Triton X-100) had an inhibitory effect on lipase activity. The optimization of various reaction conditions of ascorbyl palmitate was achieved considering one factor at a time. The esterification of ascorbic acid and palmitic acid was carried out with 1 M ascorbic acid and 2.5 M palmitic acid in DMSO at 75 °C for 18 h under shaking (120 rpm). Molecular sieves had an important effect on the ester synthesis resulting in an enhanced yield. The by-product (H(2)O) produced in the reaction was scavenged by the molecular sieves (20 mg/ml) added in the reaction mixture which enhanced the ester yield to 80 %. The characterization of synthesized ester was done through FTIR spectroscopy. |
---|