Cargando…
Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network
Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was ex...
Autores principales: | Le, Trong-Ngoc, Bao, Pham The, Huynh, Hieu Trung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002342/ https://www.ncbi.nlm.nih.gov/pubmed/27597960 http://dx.doi.org/10.1155/2016/3219068 |
Ejemplares similares
-
A proposed scenario to improve the Ncut algorithm in segmentation
por: Tran, Nhu Y., et al.
Publicado: (2023) -
Comparing feedforward neural networks using independent component analysis on hidden units
por: Satoh, Seiya, et al.
Publicado: (2023) -
Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network
por: Wu, Jie, et al.
Publicado: (2021) -
Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy
por: Ibrahim, Kiagus Aufa, et al.
Publicado: (2023) -
Retracted: Potential Fault Diagnosis Method and Classification Accuracy Detection of IGBT Device Based on Improved Single Hidden Layer Feedforward Neural Network
por: Intelligence and Neuroscience, Computational
Publicado: (2023)