Cargando…
High Dimensional Variable Selection with Error Control
Background. The iterative sure independence screening (ISIS) is a popular method in selecting important variables while maintaining most of the informative variables relevant to the outcome in high throughput data. However, it not only is computationally intensive but also may cause high false disco...
Autores principales: | Kim, Sangjin, Halabi, Susan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002494/ https://www.ncbi.nlm.nih.gov/pubmed/27597974 http://dx.doi.org/10.1155/2016/8209453 |
Ejemplares similares
-
Combined performance of screening and variable selection methods in ultra-high dimensional data in predicting time-to-event outcomes
por: Pi, Lira, et al.
Publicado: (2018) -
Controlled variable selection in Weibull mixture cure models for high‐dimensional data
por: Fu, Han, et al.
Publicado: (2022) -
A Robust Supervised Variable Selection for Noisy High-Dimensional Data
por: Kalina, Jan, et al.
Publicado: (2015) -
Correlation‐adjusted regression survival scores for high‐dimensional variable selection
por: Welchowski, Thomas, et al.
Publicado: (2019) -
Bayesian variable selection for high dimensional predictors and self-reported outcomes
por: Gu, Xiangdong, et al.
Publicado: (2020)