Cargando…

Oxidative stress increases the risk of pancreatic β cell damage in chronic renal hypertensive rats

Hypertension often occurs in conjunction with insulin resistance. The purpose of this study was to evaluate whether sustained renal hypertension increases the risk of diabetes mellitus in rats, and to define the underlying mechanisms. Two‐kidney, one‐clip hypertensive (2K1C) rats received captopril...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Shan, Park, Byung M., Cha, Seung A., Bae, Ui J., Park, Byung H., Park, Woo H., Kim, Suhn H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002910/
https://www.ncbi.nlm.nih.gov/pubmed/27535482
http://dx.doi.org/10.14814/phy2.12900
Descripción
Sumario:Hypertension often occurs in conjunction with insulin resistance. The purpose of this study was to evaluate whether sustained renal hypertension increases the risk of diabetes mellitus in rats, and to define the underlying mechanisms. Two‐kidney, one‐clip hypertensive (2K1C) rats received captopril (50 mg/kg/day), α‐lipoic acid (100 mg/kg/day), or vehicle treatment for 3 months after surgery. Blood pressure was measured by tail cuff plethysmography. Oral glucose tolerance test (OGTT), immunohistochemistry, and western blotting were performed. In addition, insulin secretion from islet cells was measured. OGTT yielded abnormal results, and the number of islet cells and the size of pancreatic β/α cells were decreased in 2K1C rats. Basal insulin levels were also reduced in the plasma. Insulin secretion from pancreatic islet cells in response to high glucose was also attenuated in 2K1C rats compared with sham rats. The levels of oxidative stress markers, including 8‐hydroxydeoxyguanosine and NADPH oxidase‐4, were increased in pancreatic tissue and pancreatic islets in 2K1C rats. The abnormalities observed in 2K1C rats were improved by captopril or α‐lipoic acid treatment. These findings indicate that sustained renal hypertension may lead to pancreatic dysfunction, increasing oxidative stress in pancreatic islets.