Cargando…
Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring
Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung surfactant...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003352/ https://www.ncbi.nlm.nih.gov/pubmed/27571350 http://dx.doi.org/10.1371/journal.pone.0155203 |
Sumario: | Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung surfactant were investigated. Female Sprague-Dawley rats were randomly assigned low vitamin D (VD(L)) or control diet before mating and followed with serum 25-hydroxyvitamin D (s-25(OH)D) determinations. After cesarean section at gestational day 19 (E19) or day 22 (E22), placental weight, birth weight, crown-rump-length (CRL), oxygenation (SaO(2)) at 30 min and survival time were recorded. The pup lungs were analyzed for phospholipid levels, surfactant protein A-D mRNA and the expression of the vitamin D receptor (VDR). S-25(OH)D was significantly lower in the VD(L) group at cesarean section (12 vs. 30nmol/L, p<0.0001). Compared to the controls, E19 VD(L) pups had lower birth weight (2.13 vs. 2.29g, p<0.001), lung weight (0.09 vs. 0.10g, p = 0.002), SaO(2) (54% vs. 69%, p = 0.002) as well as reduced survival time (0.50 vs. 1.25h, p<0.0001). At E22, the VD(L)-induced pulmonary differences were leveled out, but VD(L) pups had lower CRL (4.0 vs. 4.5cm, p<0.0001). The phospholipid levels and the surfactant protein mRNA expression did not differ between the dietary groups. In conclusion, Vitamin D depletion led to lower oxygenation and reduced survival time in the preterm offspring, associated with reduced lung weight and birth weight. Further studies of vitamin D depletion in respiratory insufficiency in preterm neonates are warranted. |
---|