Cargando…
Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6
Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003364/ https://www.ncbi.nlm.nih.gov/pubmed/27571363 http://dx.doi.org/10.1371/journal.pone.0162042 |
_version_ | 1782450637089275904 |
---|---|
author | Broersen, Robin Onuki, Yoshiyuki Abdelgabar, Abdel R. Owens, Cullen B. Picard, Samuel Willems, Jessica Boele, Henk-Jan Gazzola, Valeria Van der Werf, Ysbrand D. De Zeeuw, Chris I. |
author_facet | Broersen, Robin Onuki, Yoshiyuki Abdelgabar, Abdel R. Owens, Cullen B. Picard, Samuel Willems, Jessica Boele, Henk-Jan Gazzola, Valeria Van der Werf, Ysbrand D. De Zeeuw, Chris I. |
author_sort | Broersen, Robin |
collection | PubMed |
description | Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. |
format | Online Article Text |
id | pubmed-5003364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50033642016-09-12 Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 Broersen, Robin Onuki, Yoshiyuki Abdelgabar, Abdel R. Owens, Cullen B. Picard, Samuel Willems, Jessica Boele, Henk-Jan Gazzola, Valeria Van der Werf, Ysbrand D. De Zeeuw, Chris I. PLoS One Research Article Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. Public Library of Science 2016-08-29 /pmc/articles/PMC5003364/ /pubmed/27571363 http://dx.doi.org/10.1371/journal.pone.0162042 Text en © 2016 Broersen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Broersen, Robin Onuki, Yoshiyuki Abdelgabar, Abdel R. Owens, Cullen B. Picard, Samuel Willems, Jessica Boele, Henk-Jan Gazzola, Valeria Van der Werf, Ysbrand D. De Zeeuw, Chris I. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 |
title | Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 |
title_full | Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 |
title_fullStr | Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 |
title_full_unstemmed | Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 |
title_short | Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6 |
title_sort | impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003364/ https://www.ncbi.nlm.nih.gov/pubmed/27571363 http://dx.doi.org/10.1371/journal.pone.0162042 |
work_keys_str_mv | AT broersenrobin impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT onukiyoshiyuki impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT abdelgabarabdelr impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT owenscullenb impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT picardsamuel impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT willemsjessica impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT boelehenkjan impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT gazzolavaleria impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT vanderwerfysbrandd impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 AT dezeeuwchrisi impairedspatiotemporalpredictivemotortimingassociatedwithspinocerebellarataxiatype6 |